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Abstract: This paper brings into focus the influence of the vertical suspension damping on 
the vibration behavior in the railway vehicles.  A complex model of the vehicle-track system is taken 
into account, which considers a series of factors that affect the level of the vertical vibrations.  The 
movement equations are presented in an original manner, where the model of the vehicle-track 
system is described via 22 equations, divided into two decoupled systems defining the symmetrical 
and anti-symmetrical movements. The conclusion is that the velocity and the random nature of the 
rolling track irregularities are the ones to establish the strongest vibration modes.  The best damping 
of the suspension leading to the minimizing in the vibration behavior is being shown. 
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1. INTRODUCTION 
 
While rolling, the railway vehicle is open to a constant behavior of vibrations 

whose main source is to be found in the phenomena of interaction with the track.  Due 
to its construction, the track features as a whole, on the one hand, a number of 
deviations from the ideal geometrical shape and, on the other hand, defects of the 
rolling surfaces of the rails [1, 2]. These two above, along with the constructive 
discontinuities of the rail, make up for major reasons of the vehicle vibrations.  At the 
wheel level, the defects in the rolling surface such as eccentricity, ovality, poligonal 
profile, corrugation, the wheel flat or flattening are also causes for the vibrations [3]. 

The vibrations in vehicles develop both vertically and horizontally but, due to 
its constructive symmetries (inertial, elastic and geometrical), the two types of 
vibrations are decoupled, thus being able to be studied separately. 

Suspension plays an important role when it comes to the vibrations behavior in 
the vehicle, as it reduces the effect of the vertical, transversal and, sometimes, 
longitudinal shocks on the vehicle, thus providing both for meeting the requirements 
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derived from the rolling quality and compliance with the stipulations regarding the 
circulation safety.   

Likewise, suspension is crucial for the vehicle’s ability to help, from the 
perspective of the level of vibrations, with the comfort of passengers and transport of 
merchandise in good condition.  Also, suspension contributes to reducing the stress 
under which the vehicle load-bearing structure is.  While elastically assuming the 
shocks from the rolling track irregularities, by lowering the dynamic loads, suspension 
protects both the rolling device and the track [4].   

The moment the velocity increases, there should be considered the issue of 
keeping the behavior of vibrations to a level inflicted by the homologation criteria of 
the railway vehicles from the view of rolling quality, rolling safety, comfort of 
passengers and track fatigue [5].  The solution would be a permanent improvement of 
the railway vehicles, and suspension is one of the priority items on the agenda. 

The paper introduces the influence of the vertical suspension damping on the 
vibrations behavior at the vehicle carbody level, in three points defined as reference 
points in the vibrations level terminology.   

For a correct evaluation of the railway vehicles dynamic behavior, mainly at 
high velocities, a complex model of the vehicle-track system is presented, which model 
considers the carbody elasticity, track elasticity and of the wheel-rail contact’s, the 
influence of the conveyance system of the longitudinal stresses, as well as the effect of 
the geometrical filtering introduced by the distance between bogies [6 - 8]. 

Upon applying an original method based on the modal analysis, the model of 
the vehicle-track system is described in 22 movement equations, divided into two 
decoupled systems, one for the symmetrical and the other for the anti-symmetrical 
movements. 

The paper also includes the results of the numerical simmulations concerning 
the response of the vehicle in a permanent vibration harmonic behavior, as well as the 
excitations represented by the random irregularities of the track. The vibration 
dominant modes are shown to be in a close relation with velocity and the random 
nature of the rolling track irregularities.  Also, the possibility of establishing the best 
suspension damping is to be noticed, which reduces the vibrations behavior to a 
minimum. 

 
2. MECHANICAL MODEL AND MOVEMENT EQUATIONS 

 
The case here is of a four-axle vehicle, with two-stage suspension which 

travels at the constant speed V on a track with irregularities of longitudinal nivelment 
of a harmonic type.  The mechanical model for the study of the vertical vibrations in 
the vehicle-track system is shown in figure 1.  
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Fig. 1. The mechanical model of the vehicle-track system.  
 

The model of the vehicle includes a body with parameters distributed for the 
carbody and a system of rigid bodies, respectively the wheelsets and the suspended 
masses of the two bogies. The carbody of the vehicle with length L and mass mc is 
modelled by an Euler-Bernoulli beam of a constant section and a uniformly distributed 
mass, with the bending module EI, where E is the longitudinal module of elasticity and 
I is the inertia moment of the beam transversal section [9]. The structural analysis of 
the carbody structural.  

The suspended masses of the bogies are considered rigid bodies on three 
degrees of freedom, with the following movements: bounce zbi, forward xbi and pitch 
θbi, where i = 1, 2. The mass of a bogie is mb, and its inertia momentum 2

bbb imJ = , 
with ib – the bogie gyration radius. The wheelsets of mass mo have two degrees of 
freedom, thus generating a vertical movement of translation zoj,(j+1) and a longitudinal 
movement of translation xoj,(j+1), where j = 2i-1, and i = 1, 2, where each bogie is 
equipped with the wheelsets j and j+1. 

Should we neglect the coupling effects between wheels derived from the 
propagation of the bending waves through rails, for the frequency range that is specific 
to the vehicle vertical vibrations, then a model equivalent with concentrated parameters 
will be adopted. 
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Against each wheelset in the bogie i, the track is represented by an oscillatory 
one- degree of freedom system that can move vertically, and the appropriate bounce is  
zsj,(j+1), where j = 2i-1 (for i = 1, 2). The track equivalent model has the mass ms, 
stiffness kzs and the damping coefficient czs.  

The vehicle suspension, two levels on each bogie, are modelled by means of 
the Kelvin-Voigt systems. The primary suspension has two Kelvin-Voigt systems that 
operate on translation, vertically and longitudinally; on the other hand, the carbody 
suspension has three Kelvin-Voigt systems, two for translation (vertical and 
longitudinal) and one for rotation.   

The elements of the Kelvin-Voigt system that take over the angular relative 
travelling between the carbody and bogie take into account the influence of the 
secondary suspension. The Kelvin-Voigt system on the longitudinal direction between 
the carbody and the bogie models the system of transmission of the longitudinal forces, 
located at distance hc from the carbody neutral fiber and at distance hb2 from the center 
of gravity of the bogie’s suspended mass. The longitudinal Kelvin-Voigt system 
located in the axle plan, at distance hb1 from the mass center of the bogie suspended 
mass, models the elastic steering of the wheelsets.  

The features of the elastic connections of the secondary suspension, related to 
a bogie, are represented by the elastic constant values on vertical direction 2kzc, 
longitudinal 2kxc and the pitch angular stiffness 2kθc, as well as the damping constant 
values 2czc, 2cxc and 2cθc.  For the primary level of suspension, corresponding to an 
wheelset, the elastic constant values are noted with 2kzb – on vertical direction and with 
2kxb – on longitudinal direction, while the damping ones are 2czb, and 2cxb respectively. 

To calculate the frequency response, the track irregularities are considered to 
have a harmonic shape, with the wave length L and amplitude η0  

 

x
L

x π
η=η

2cos)( 0 ,                                                   (1) 
 
where x is the coordinate along the track.  

The size of the irregularities against each axle depends on their position.  
While considering the above equation to correspond to the track irregularity in the 
middle of the vehicle and that the position of the vehicle reported to the track is given 
in the relation x = Vt, then the defects against the axles are dephased by 2π(ac ± ab)/lL- 
against the front bogie and by 2π(–ac ± ab)/L against of the axles of the rear bogie, 
where L is the defect wavelength, 2ac is the distance between bogies and 2ab stands for 
the bogie wheelbase.  As a result, the deviations of irregularity will be  
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where ω = 2πV/L is the angular frequency induced by the track excitation. 
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Further, once the mechanics laws are implemented, the movement equations of 
the vehicle-track system are as follows:  

- for the carbody bending 
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where δ(.) is Dirac’s delta function, and Fxi, Fzi and Mi are the forces and the moments 
derived from the secondary suspension of the bogie i.  

The carbody movement equation, which includes partial derivatives, can be 
changed into equations with ordinary derivatives by implementing the method of 
modal analysis.  For this purpose, the rigid and bending carbody modes are taken into 
account as  
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where zc(t) and θc(t) are the carbody vibration rigid modes, namely the bounce and 
pitch, Tn(t) is the time coordinate and Xn(x) is the natural function of the mode n of 
vibration while bending  
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where                                             )/(2 EImnn ω=β                                                   (6) 
 
with ωn as the natural angular frequency of the vibration mode n. 

- for the bogie i bounce movement  
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- for the bogie i pitch movement 
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- for the bogie i rebound movement 
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where Fzbj represents the forces due to the primary suspension and Fxbj the forces 
derived from the system of the axles elastic guidance. 

- for the vertical movement of the axle j, and axle j +1 respectively 
 

)1(,)1(,)1(, 2 +++ −∆= jzbjjjjojo FQzm  ;                                     (10) 
 

- for the longitudinal movement of the axle j, and for the axle j +1 
 

)1(,)1(, ++ −= jxbjjojo Fxm  , for j = 2i-1 and i = 1, 2.                            (11) 
 

To calculate the vertical dynamic forces, the hypothesis of the linear hertzian 
wheel-rail contact has been adopted 

 
][ )1(,)1(,)1(,)1(, ++++ η−−−=∆ jjjsjjojHjj zzkQ , for  j = 2i-1 and i = 1, 2             (12) 

 
where ηj,(j+1), are the defects of the track longitudinal irregularity against the axle j, and 
j+1, and kH – the rigidity of the wheel-rail contact. 

-for the vertical movement of the rail against the axle j, and  j +1 
 

)1(,)1(,)1(, 2 +++ ∆−= jjjzsjjsjs QFzm  .                                      (13) 
 

While considering only the first two natural modes of the carbody bending, 
symmetrical and anti-symmetrical, it results that the vibration of the vehicle-track 
system is described by a set of 22 equations, coupled with ordinary derivatives.  
Nevertheless, a correct choice of the coordinates and an appropriate interpretation of 
the system of equations will lead to its division into two independent systems of ten 
equations each, which systems describe the symmetrical and anti-symmetrical 
movements of the vehicle-track system and two decoupled movement equations.  Thus, 
while writing   
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the equations of the symmetrical movements are as follows  
 

- the carbody symmetrical bounce 
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- the carbody symmetrical bending 
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 - the symmetrical bounce of the bogies 
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- the symmetrical pitch of the bogies 
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- the symmetrical rebound of the bogies 
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 - the vertical symmetrical movement of the axles 
  

0)(2)(2)(2 19636366 =η−−+−+−+ ++++++++ ppkppkppcpm Hzbzbo  ;            (19) 
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- the longitudinal symmetrical movement of the axles  
           

0)(2)(2 541854188 =−++−++ +++++++ pphpkpphpcpm bxbbxbo  ;                  (21) 
 

- the vertical symmetrical movement of the rails 
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and the equations of the anti-symmetrical movements  
 
 - the carbody anti-symmetrical pitch 
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 - the carbody anti-symmetrical bending 
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 - the anti-symmetrical bounce of the bogies 
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- the anti-symmetrical pitch of the bogies 
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- the anti-symmetrical rebound of the bogies 
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 - the vertical anti-symmetrical movement of the axles 

 

0)(2)(2)(2 19636366 =η−−+−+−+ −−−−−−−− ppkppkppcpm Hzbzbo  ;            (29) 
 

0)(2)(2)(2 210747477 =η−−+−+−+ −−−−−−−− ppkpapkpapcpm Hbzbbzbo  ;       (30) 
 
- the longitudinal anti-symmetrical movement of the axles 
 

0)(2)(2 541854188 =−++−++ −−−−−−− pphpkpphpcpm bzbbxbo  ;              (31) 
 
- the vertical anti-symmetrical movement of the rails 
 

0)(222 169999 =η+−+++ −−−−−− ppkpkpcpm Hzszss  ;                      (32) 
 

0)(222 2710101010 =η+−+++ −−−−−− ppkpkpcpm Hzszss  .                     (33) 
 
 Similarly, the decoupled movement equations will be obtained, to describe the 
longitudinal movement of the axles in each bogie only 
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 The terms kmn, cmn and mmn, (with n = 2, 3) included in the equations (15) and 
(25) stand for rigidity, damping and the modal mass, given by the expressions  
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The movement equations contain two symmetrical modes of excitation  
 

432114 η+η+η+η=η+ ;  432114 η−η−η+η=η−                       (36) 
 
and two anti-symmetrical modes of excitation 

 

432124 η−η+η−η=η− ; 432124 η+η−η−η=η+ .                      (37) 
 
due to the track irregularities against the axles. 
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 3. BEHAVIOR OF RANDOM VIBRATIONS 
 

As shown earlier, the study of the vehicle vertical vibrations involves the 
hypothesis that this vehicle runs on a track with random defects of a longitudinal 
nivelment.  Also, it is assumed that the rolling track random defects are stationary in nature. 

The spectral density power of the track irregularities can be approximated by a 
theoretical curve and the literature in review mentions various computation relations that 
generally concern the track quality.  The recommended form by ORE [10] is featured 
below, 
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where Ω is the wave number, Ωc = 0,8246 rad/m, Ωr = 0,0206 rad/m, and A = 4,032⋅10-

7 rad m or A = 1,080⋅10-6 rad m, depending on the track quality. 
While noticing that the track defects become an excitation factor for the vehicle 

travelling at speed V, the spectral density power of the nivelment defects has to be 
expressed in dependence of the angle frequency ω = VΩ, as per the general relation 
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The equations (38) and (39) will give   
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When starting with the vehicle frequency response and the range of the track 

defects, the spectral density power of the carbody vertical movement can be computed.   
Thus, for the response factor ),( ωxHc  in a random point x along the carbody 
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where )(ωczH , )(ωθcH , )(ωiTH  are the response factors corresponding to the rigid 
modes of vibration  – bounce and pitch (zc şi θc) and of the natural modes of 
symmetrical and anti-symmetrical bending (T2,3), then the spectral density power of the 
carbody vertical movement will be 
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The equation (41) can be customized for various points along the carbody.  
Thus, in the middle of the carbody, the response factor is   
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and above the two bogies   
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The power spectral density of the carbody vertical acceleration are calculated 

by the relation  
24 ),()(),( xHGxG cca ωωω=ω ,                                     (45) 

 
valid for any point along the carbody.  

   
4. NUMERICAL APPLICATION 

 
This section features the results to the numerical simulations regarding the 

vehicle response in a steady-state harmonic behavior of vibrations, as well as the 
excitations represented by the random track irregularities. These simulations rely on 
the model and method shown in the previous section. The parameters of the numerical 
simulation have been properly defined for a passengers car equipped with bogies Y 
32R, with the maximum velocity of 200 km/h.  

In order to facilitate the analysis of vehicle vibrations behaviour, the damping 
ratio of each suspension level is introduced    
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In figure 2, the frequency response of the carbody at its centre (fig. 2, a) and 

against the two bogies (fig. 2, b) at speed of 200 km/h is shown, for the undamped case 
and for the reference values of the damping ratio (ζb = 0.22, ζc = 0.12).  

At the centre of the carbody, its response is triggered by solely the symmetrical 
modes of vibration.  For the undamped case, the peaks of the resonance frequencies 
can be noticed for the following symmetrical modes: the low bounce at 1.17 Hz and 
the high bounce at 6.61 Hz, the symmetrical carbody bending at 8.2 Hz, the bogie 
forward at 3.76 Hz and the bogie pitch at 9.63 Hz. Besides the resonance peaks, the 
anti-resonance frequencies are present, due to the geometric filtering derived from the 
distance between the bogies and the axle base. The introduction of damping lowers the 
level of vibrations against the resonance frequencies, but levels off, to a certain extent, 
the effect of the geometric filtering.   
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Above the bogies, the carbody vibration is made up of both the symmetrical 
vibration modes and anti-symmetrical, thus leading to an intensification of the 
vibration behaviour, under certain conditions.  In other words, for the undamped case, 
the peaks of the resonance frequencies for the symmetrical movements, already 
mentioned, are accompanied by the ones for the anti-symmetrical movements, namely: 
the low frequency of the pitch at 1.46 Hz and the high frequency of the pitch at 9.61 
Hz, the frequency of the anti-symmetrical bounce at 6.66 Hz, the anti-symmetrical 
carbody bending at 22.25 Hz and the bogie forward at 3.81 Hz. The lack of damping 
will make the carbody response above the two bogies symmetrical.  

Above the bogies, the effect of the geometric filtering is less visible, since this 
place only the filtering effect of the axle base is present. The filtering due to the 
distance between the bogies does not operate in this case. When damping is 
considered, differences between the carbody response from one bogie to the other are 
quite significant.  Such differences explain why the level of carbody vibration is not 
the same above the two bogies.  

A final observation regards the fact that, when damping is introduced, the level 
of vibration for frequencies of up to circa 12 Hz is lower – mainly for the resonance 
areas – and significantly intensifies at high frequencies. 

 

 
 

Fig. 2. Influence of damping on carbody response : (a) in the center , ∙ ∙ ∙ ∙, ζc = 0, ζb = 0;  
——, ζc = 0.12, ζb = 0.22; (b) above the two bogies,  ∙ ∙ ∙ ∙, ζc = 0, ζb = 0;  

——, above the front bogie;  −  −, above the rear bogie, ζc = 0.12, ζb = 0.22. 
 

The suspension damping plays an important role in terms of the carbody 
vibrations behaviour.  Figure 3 shows the frequency response of the acceleration in the 
centre of carbody and against the two bogies for the reference speeds of 100 and 200 
km/h, when considering the following values of the damping degrees: ζb = 0.22, ζc = 
0.12 – the reference values and ζb = 0.44, ζc = 0.24, respectively.   

The damping has opposite effects that depend on both the vibration modes and 
velocity.  For examples, a higher damping will lower the carbody response at the low 
resonance bounce frequency. On the other hand, a higher damping will trigger an 
ampler response in the centre of the carbody within the bending resonance frequency 
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range, which is noticed at 100 km/h; on the contrary, at 200 km/h, a higher damping 
reduces the vibration level. For high frequencies, a higher damping leads to 
intensification in the vibrations behaviour. 

The diagrams in figure 3 also present the fact that, at the velocities there, the 
vehicle response is dominated by the carbody low bounce and by its symmetric 
bending.   

 

 
 

Fig. 3. Influence of suspension damping on the response factor of the carbody acceleration:  
(a) in the center; (b) above the front bogie; (c) above the rear bogie; 

—, ζb = 0,22, ζc = 0,12; ∙ ∙ ∙ ∙, ζb = 0,44, ζc = 0,24. 
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Fig. 4. Influence of the suspension damping on the response factor of carbody acceleration  
in the center: (a) at the low resonance bounce frequency (1.17 Hz);  

(b) at the resonance frequency of carbody symmetrical bending (8.2 Hz). 
 

This is why it should be interesting to see in detail how the suspension 
damping influences the vehicle response for the two modes of vibrations (see figure 4).  
It can be noticed that, for a higher damping, the vibration level from the low bounce 
will continuously lower for the values being taken into account (fig 4, a).  As for the 
influence of damping on the carbody vibration at the natural bending mode frequency 
(fig 4, b), it is quite  interesting to see that for the small damping, the vibration level 
decreases along with the increase in damping, until it reaches a minimum value. 
Further, the level of vibration goes up with the increase of damping, due to the fact that 
the suspension dynamic stiffness is increasing.  This aspect is the prerequisite of the 
existence of the best damping that minimizes the vehicle vibration at the velocities 
where the carbody bending dominates the vibrations behaviour. 

The behavior of vibrations at the carbody level is established by both natural 
characteristics of the vehicle-track system and also the range of the track irregularities.  
In a nutshell, a clear image is obtained upon considering the two above characteristics.  
Figure 5 shows the power spectral density of the carbody in the middle and above the 
two bogies when vehicle is running on a high quality track (constant A = 4,032⋅10-7 rad 
m) at the velocities of 100 and 200 km/h.  

It is interesting to notice that, for the above velocities, unlike the carbody 
response factor, (see fig. 3) where the dominant frequency is given by the symmetrical 
bending mode, the power spectral density of the acceleration is commanded by the low 
modes of the carbody vibration (bounce and pitch).  This issue can be justified by the 
fact that the spectrum of the power spectral density of the track irregularities goes 
down along with the frequency. 

In the middle of the carbody, as seen in fig 5, a’, a dominant value, is the low 
bounce.  This statement is valid for a wide horizon of velocities – nevertheless, there is 
an interval of velocities focused on the value of 170 km/h where the vibration in the 
middle of the carbody is dominated by the carbody bending due to the geometrical 
filtering effect that, at these velocities, will fade out the influence of the low bounce. 
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Fig. 5. Acceleration power spectral density: 
(a) and (a’) in the carbody middle; (b) and (b’) above the front bogie; 

(c) and (c’) above the rear bogie;  —, V = 100 km/h; ∙ ∙ ∙ ∙, V = 200 km/h. 
 
Above the two bogies, the low bounce and the pitch dominate, with their 

frequencies being very close.  The spectral density here is in the shape of a summit.  
On the other hand, the different nature of the vibration behavior above the two bogies 
can be noticed.  Whereas the power spectral density goes up continuously with the 
velocity at the first bogie (there is no influence from the geometric filtering effect 
whatsoever), the velocity will be around 120 km/h for the second bogie, due to the 
geometric filtering effect from the distance between bogies.  
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5. CONCLUSIONS 
 

The suspension of the railway vehicles plays an essential role in meeting the 
requirements brought about the homologation of the vehicles from the view of rolling 
quality, rolling safety, comfort of passengers and track fatigue. 

This paper evaluates the influence of the damping of the suspension layers of a 
passenger vehicle upon its response to the random irregularities of the track.  For this 
purpose, a complex discrete-continuous model of the vehicle-track system is being 
used.  The movement equations are presented in an original manner, based on the modal 
analysis, in order to highlight the symmetrical and anti-symmetrical movements and the 
excitation modes.   

It has been shown that damping will trigger the asymmetry of the vibration level 
on either side of the carbody center.  On the other hand, damping reduces the vibration 
level in the field of low frequencies and leads to the vibration intensification in the range of 
high frequencies, of over 12 Hz.  The existence of the best damping has been proven, 
which reduces the vibration level to a minimum.   This issue has a strong practical 
meaning, since it provides a rational base to the improvement in designing the suspension 
for the railway vehicles.  A connection has been made among damping, geometric filtering 
effect and the velocity, which will determine the vehicle dynamic performance. 
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